//]]>
McCormac, Jack C.

Design of reinforced concrete / Jack C. McCormac, Russell H. Brown. - 9th ed., ACI 318-11 Code Edition. - Hoboken, N.J : Wiley, 2014. - xvii, 714 p. : ill. ; 27 cm.

Includes bibliographical references and index.

Machine generated contents note: 1.Introduction -- 1.1.Concrete and Reinforced Concrete -- 1.2.Advantages of Reinforced Concrete as a Structural Material -- 1.3.Disadvantages of Reinforced Concrete as a Structural Material -- 1.4.Historical Background -- 1.5.Comparison of Reinforced Concrete and Structural Steel for Buildings and Bridges -- 1.6.Compatibility of Concrete and Steel -- 1.7.Design Codes -- 1.8.SI Units and Shaded Areas -- 1.9.Types of Portland Cement -- 1.10.Admixtures -- 1.11.Properties of Concrete -- 1.12.Aggregates -- 1.13.High-Strength Concretes -- 1.14.Fiber-Reinforced Concretes -- 1.15.Concrete Durability -- 1.16.Reinforcing Steel -- 1.17.Grades of Reinforcing Steel -- 1.18.SI Bar Sizes and Material Strengths -- 1.19.Corrosive Environments -- 1.20.Identifying Marks on Reinforcing Bars -- 1.21.Introduction to Loads -- 1.22.Dead Loads -- 1.23.Live Loads -- 1.24.Environmental Loads -- 1.25.Selection of Design Loads -- 1.26.Calculation Accuracy -- 1.27.Impact of Computers on Reinforced Concrete Design -- Problems -- 2.Flexural Analysis of Beams -- 2.1.Introduction -- 2.2.Cracking Moment -- 2.3.Elastic Stresses -- Concrete Cracked -- 2.4.Ultimate or Nominal Flexural Moments -- 2.5.SI Example -- 2.6.Computer Examples -- Problems -- 3.Strength Analysis of Beams According to ACI Code -- 3.1.Design Methods -- 3.2.Advantages of Strength Design -- 3.3.Structural Safety -- 3.4.Derivation of Beam Expressions -- 3.5.Strains in Flexural Members -- 3.6.Balanced Sections Tension-Controlled Sections and Compression-Controlled or Brittle Sections -- 3.7.Strength Reduction or Factors -- 3.8.Minimum Percentage of Steel -- 3.9.Balanced Steel Percentage -- 3.10.Example Problems -- 3.11.Computer Examples -- Problems -- 4.Design of Rectangular Beams and One-Way Slabs -- 4.1.Load Factors -- 4.2.Design of Rectangular Beams -- 4.3.Beam Design Examples -- 4.4.Miscellaneous Beam Considerations -- 4.5.Determining Steel Area When Beam Dimensions Are Predetermined -- 4.6.Bundled Bars -- 4.7.One-Way Slabs -- 4.8.Cantilever Beams and Continuous Beams -- 4.9.SI Example -- 4.1.Computer Example -- Problems -- 5.Analysis and Design of T Beams and Doubly Reinforced Beams -- 5.1.T Beams -- 5.2.Analysis of T Beams -- 5.3.Another Method for Analyzing T Beams -- 5.4.Design of T Beams -- 5.5.Design of T Beams for Negative Moments -- 5.6.L-Shaped Beams -- 5.7.Compression Steel -- 5.8.Design of Doubly Reinforced Beams -- 5.9.SI Examples -- 5.10.Computer Examples -- Problems -- 6.Serviceability -- 6.1.Introduction -- 6.2.Importance of Deflections -- 6.3.Control of Deflections -- 6.4.Calculation of Deflections -- 6.5.Effective Moments of Inertia -- 6.6.Long-Term Deflections -- 6.7.Simple-Beam Deflections -- 6.8.Continuous-Beam Deflections -- 6.9.Types of Cracks -- 6.10.Control of Flexural Cracks -- 6.11.ACI Code Provisions Concerning Cracks -- 6.12.Miscellaneous Cracks -- 6.13.SI Example -- 6.14.Computer Example -- Problems -- 7.Bond Development Lengths and Splices -- 7.1.Cutting Off or Bending Bars -- 7.2.Bond Stresses -- 7.3.Development Lengths for Tension Reinforcing -- 7.4.Development Lengths for Bundled Bars -- 7.5.Hooks -- 7.6.Development Lengths for Welded Wire Fabric in Tension -- 7.7.Development Lengths for .Compression Bars -- 7.8.Critical Sections for Development Length -- 7.9.Effect of Combined Shear and Moment on Development Lengths -- 7.10.Effect of Shape of Moment Diagram on Development Lengths -- 7.11.Cutting Off or Bending Bars (Continued) -- 7.12.Bar Splices in Flexural Members -- 7.13.Tension Splices -- 7.14.Compression Splices -- 7.15.Headed and Mechanically Anchored Bars -- 7.16.SI Example -- 7.17.Computer Example -- Problems -- 8.Shear and Diagonal Tension -- 8.1.Introduction -- 8.2.Shear Stresses in Concrete Beams -- 8.3.Lightweight Concrete -- 8.4.Shear Strength of Concrete -- 8.5.Shear Cracking of Reinforced Concrete Beams -- 8.6.Web Reinforcement -- 8.7.Behavior of Beams with Web Reinforcement -- 8.8.Design for. Shear -- 8.9.ACI Code Requirements -- 8.10.Shear Design Example Problems -- 8.11.Economical Spacing of Stirrups -- 8.12.Shear Friction and Corbels -- 8.13.Shear Strength of Members Subjected to Axial Forces -- 8.14.Shear Design Provisions for Deep Beams -- 8.15.Introductory Comments on Torsion -- 8.16.SI Example -- 8.17.Computer Example -- Problems -- 9.Introduction to Columns -- 9.1.General -- 9.2.Types of Columns -- 9.3.Axial Load Capacity of Columns -- 9.4.Failure of Tied and Spiral Columns -- 9.5.Code Requirements for Cast-in-Place Columns -- 9.6.Safety Provisions for Columns -- 9.7.Design Formulas -- 9.8.Comments on Economical Column Design -- 9.9.Design of Axially Loaded Columns -- 9.10.SI Example -- 9.11.Computer Example -- Problems -- 10.Design of Short Columns Subject to Axial Load and Bending -- 10.1.Axial Load and Binding -- 10.2.The Plastic Centroid -- 10.3.Development of Interaction Diagrams -- 10.4.Use of Interaction Diagrams -- 10.5.Code Modifications of Column Interaction Diagrams -- 10.6.Design and Analysis of Eccentrically Loaded Columns Using Interaction Diagrams -- 10.7.Shear in Columns -- 10.8.Biaxial Bending -- 10.9.Design of Biaxially Loaded Columns -- 10.10.Continued Discussion of Capacity Reduction Factors -- 10.11.Computer Example -- Problems -- 11.Slender Columns -- 11.1.Introduction -- 11.2.Nonsway and Sway Frames -- 11.3.Slenderness Effects -- 11.4.Determining k Factors with Alignment Charts -- 11.5.Determining k Factors with Equations -- 11.6.First-Order Analyses Using Special Member Properties -- 11.7.Slender Columns in Nonsway and Sway Frames -- 11.8.ACI Code Treatments of Slenderness Effects -- 11.9.Magnification of Column Moments in Nonsway Frames -- 11.10.Magnification of Column Moments in Sway Frames -- 11.11.Analysis of Sway Frames -- 11.12.Computer Examples -- Problems -- 12.Footings -- 12.1.Introduction -- 12.2.Types of Footings -- 12.3.Actual Soil Pressures -- 12.4.Allowable Soil Pressures -- 12.5.Design of Wall Footings -- 12.6.Design of Square Isolated Footings -- 12.7.Footings Supporting Round or Regular Polygon-Shaped Columns -- 12.8.Load Transfer from Columns to Footings -- 12.9.Rectangular Isolated Footings -- 12.10.Combined Footings -- 12.11.Footing Design for Equal Settlements -- 12.12.Footings Subjected to Axial Loads and Moments -- 12.13.Transfer of Horizontal Forces -- 12.14.Plain Concrete Footings -- 12.15.SI Example -- 12.16.Computer Examples -- Problems -- 13.Retaining Walls -- 13.1.Introduction -- 13.2.Types of Retaining Walls -- 13.3.Drainage -- 13.4.Failures of Retaining Walls -- 13.5.Lateral Pressure on Retaining Walls -- 13.6.Footing Soil Pressures -- 13.7.Design of Semigravity Retaining Walls -- 13.8.Effect of Surcharge -- 13.9.Estimating the Sizes Cantilever Retaining Walls -- 13.10.Design Procedure for Cantilever Retaining Walls -- 13.11.Cracks and Wall Joints -- Problems -- 14.Continuous Reinforced Concrete Structures -- 14.1.Introduction -- 14.2.General Discussion of Analysis Methods -- 14.3.Qualitative Influence Lines -- 14.4.Limit Design -- 14.5.Limit Design under the ACI Code -- 14.6.Preliminary Design of Members -- 14.7.Approximate Analysis of Continuous Frames for Vertical Loads -- 14.8.Approximate Analysis of Continuous Frames for Lateral Loads -- 14.9.Computer Analysis of Building Frames -- 14.10.Lateral Bracing for Buildings -- 14.11.Development Length Requirements for Continuous Members -- Problems -- 15.Torsion -- 15.1.Introduction -- 15.2.Torsional Reinforcing -- 15.3.Torsional Moments that Have to Be Considered in Design -- 15.4.Torsional Stresses -- 15.5.When Torsional Reinforcing Is Required by the ACI -- 15.6.Torsional Moment Strength -- 15.7.Design of Torsional Reinforcing -- 15.8.Additional ACI Requirements -- 15.9.Example Problems Using U.S. Customary Units -- 15.10.SI Equations and Example Problem -- 15.11.Computer Example -- Problems -- 16.Two-Way Slabs Direct Design Method -- 16.1.Introduction -- 16.2.Analysis of Two-Way Slabs -- 16.3.Design of Two-Way Slabs by the ACI Code -- 16.4.Column and Middle Strips -- 16.5.Shear Resistance of Slabs -- 16.6.Depth Limitations and Stiffness Requirements -- 16.7.Limitations of Direct Design Method -- 16.8.Distribution of Moments in Slabs -- 16.9.Design of an Interior Flat Plate -- 16.10.Placing of. Live Loads -- 16.11.Analysis of Two-Way Slabs with Beams -- 16.12.Transfer of Moments and Shears between Slabs and Columns -- 16.13.Openings in Slab Systems -- 16.14.Computer Example -- Problems -- 17.Two-Way Slabs Equivalent Frame Method -- 17.1.Moment Distribution for Nonprismatic Members -- 17.2.Introduction to the Equivalent Frame Method -- 17.3.Properties of-Slab Beams -- 17.4.Properties of Columns -- 17.5.Example Problem -- 17.6.Computer Analysis -- 17.7.Computer Example -- Problems -- 18.Walls -- 18.1.Introduction -- 18.2.Non-Load-Bearing Walls -- 18.3.Load-Bearing Concrete Walls -- Empirical Design Method -- 18.4.Load-Bearing Concrete Walls -- Rational Design -- 18.5.Shear Walls -- 18.6.ACI Provisions for Shear Walls -- 18.7.Economy in Wall Construction -- 18.8.Computer Example -- Problems -- 19.Prestressed Concrete -- 19.1.Introduction -- 19.2.Advantages and Disadvantages of Prestressed Concrete -- 19.3.Pretensioning and Posttensioning -- 19.4.Materials Used for Prestressed Concrete -- 19.5.Stress Calculations -- 19.0.Shapes of Prestressed Sections -- 19.7.Prestres Losses -- 19.8.Ultimate Strength of Prestressed Sections -- 19.9.Deflections -- 19.10.Shear in Prestressed Sections -- 19.11.Design of Shear Reinforcement -- 19.12.Additional Topics -- 19.13.Computer Example -- Problems -- 20.Reinforced Concrete Masonry -- 20.1.Introduction -- 20.2.Masonry Materials -- 20.3.Specified Compressive Strength of Masonry -- 20.4.Maximum Flexural Tensile Reinforcement -- 20.5.Walls with Out-of-Plane Loads -- Non-Load-Bearing Walls -- 20.6.Masonry Lintels -- 20.7.Walls with Out-of-Plane Loads -- Load-Bearing -- 20.8.Walls with In-Plane Loading -- Shear Walls -- 20.9.Computer Example Note continued: Problems -- A.Tables and Graphs: U.S. Customary Units -- B.Tables in SI Units -- C.The Strut-and-Tie Method of Design -- C.1.Introduction -- C.2.Deep Beams -- C.3.Shear Span and Behavior Regions -- C.4.Truss Analogy -- C.5.Definitions -- C.6.ACI Code Requirements for Strut-and-Tie Design -- C.7.Selecting a Truss Model -- C.8.Angles of Struts in Truss Models -- C.9.Design Procedure -- D.Seismic Design of Reinforced Concrete Structures -- D.1.Introduction -- D.2.Maximum Considered Earthquake -- D.3.Soil Site Class -- D.4.Risk and Importance Factors -- D.5.Seismic Design Categories -- D.6.Seismic Design Loads -- D.7.Detailing Requirements for Different Classes of Reinforced Concrete Moment Frames -- Problems.

"The Ninth Edition of this bestselling book continues the successful tradition of earlier editions by introducing the fundamentals of reinforced concrete design in a clear and understandable manner. Numerous examples of the principles discussed are included. This edition includes revisions made by the American Concrete Institute in Building Code Requirements for Structural Concrete (318-08) and Commentary (318R-08). The text was prepared for an introductory three credit hour undergraduate course on reinforced concrete design. Nevertheless, sufficient material is included so that this textbook can be used for a second additional three credit hour undergraduate course. Further, this text is also useful for practicing engineers as it presents the latest requirements of the ACI design code"--

9781118129845 (hardback : acidfree paper) 1118129849 (hardback : acidfree paper)


Reinforced concrete construction.

624.18341 / M131

Languages: 
English |