//]]>

High Performance Fiber Reinforced Cement Composites 6 (Record no. 12631)

000 -LEADER
fixed length control field 12293nam a22004935i 4500
003 - CONTROL NUMBER IDENTIFIER
control field OSt
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20140310143359.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr nn 008mamaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 120127s2012 ne | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9789400724365
978-94-007-2436-5
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 624
Edition number 23
264 #1 -
-- Dordrecht :
-- Springer Netherlands,
-- 2012.
912 ## -
-- ZDB-2-ENG
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Parra-Montesinos, Gustavo J.
Relator term editor.
245 10 - IMMEDIATE SOURCE OF ACQUISITION NOTE
Title High Performance Fiber Reinforced Cement Composites 6
Medium [electronic resource] :
Remainder of title HPFRCC 6 /
Statement of responsibility, etc edited by Gustavo J. Parra-Montesinos, Hans W. Reinhardt, A. E. Naaman.
300 ## - PHYSICAL DESCRIPTION
Extent XXIV, 560p. 214 illus., 101 illus. in color.
Other physical details online resource.
440 1# - SERIES STATEMENT/ADDED ENTRY--TITLE
Title RILEM State of the Art Reports,
International Standard Serial Number 2211-0844 ;
Volume number/sequential designation 2
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Dedication --  Preface -- Workshop -- Acknowledgements -- Part 1: Composite properties in the fresh and hardened states;1 Strength dependent tensile behavior of strain hardening fiber reinforced concrete, by D.J. Kim, K. Wille, A.E. Naaman, S. El-Tawil -- 2 Tailoring SHCC made of steel cords and plastic fibers, by A. P. Fantilli, H. Mihashi, T. Naganuma, T. Nishiwaki -- 3 Model of hooked steel fibers reinforced concrete under tension, by  C. Sujivorakul -- 4 Use of double punch test to evaluate the mechanical performance of fiber reinforced concrete, by S.-H. Chao, N. Karki, J.-S. Cho, R. Waweru -- 5 Determining specimen size influences on FRC response using the digital image correlation technique, by L.N. Talboys, A.S. Lubell, V.S. Bindiganavile -- 6 Connecting non-destructive fiber dispersion measurements with tensile HPFRCC behavior, by L. Ferrara, M. Faifer, M. Muhaxheri, S. Toscani,R. Ottoboni -- 7  Improved tensile performance with fiber reinforced self-compacting concrete, by S. Grünewald, F. Laranjeira, J. Walraven, A. Aguado,C. Molins -- 8 The impact of rheology on the mechanical performanceof steel fiber reinforced concrete, by G.P.A.G. van Zijl, S. Zeranka -- 9 Quantification of fresh and mechanical properties of HFRCC by excess paste thickness, by H. Mihashi, N. Ishikawa -- 10 An investigation of mechanical properties of jute fiber-reinforced concrete, by J. Kim, C. Park, Y. Choi, H. Lee, G. Song -- 11 Back-calculation of tensile properties of strain softening and hardening cement composites, by M. Bakhshi, C. Barsby, B. Mobasher -- 12 Basis of a finite-element simulation tool to predict the flexural behavior of SFRC prisms,by T. Soetens, S. Matthys, L. Taerwe, A. Van Gysel -- 13 Multifunctional carbon black engineered cementitious composites for the protection of critical infrastructure, by M. Li, V. Lin, J. Lynch, V.C. Li -- 14 Effects of fiber dispersion and flaw size distribution on the composite properties of PVA-ECC, by R. Ranade, M.D. Stults, B. Lee, V.C. Li -- Part 2: Bond and pull-out mechanisms -- 15 Groups of physical parameters influencing the three stages pull-out behavior of glass multi-filament yarns embedded in micro-concrete, by H. Aljewifi, B. Fiorio, J-L. Gallias -- 16  Tailor-made steel fiber reinforced ultra high performance concrete – single fiber pull-out, bending capacity and fracture toughness, by T. Stengel, X. Lin, P. Schießl, C. Gehlen -- 17 Study on size effect in bond splitting behavior of ECC, by K. Asano, T. Kanakubo -- 18 Experimental and nonlinear finite element analysis of fiber-cementitious matrix bond-slip mechanism, by C. S. Chin, R. Y. Xiao -- Part 3: Durability -- 19 Self-healing of engineered cementitious composites in the natural environment, by E. Herbert, V.C. Li -- 20 Resistance to corrosion induced cracking in self consolidating hybrid fiber reinforced concrete, by G. Jen, C.P. Ostertag -- 21 Basic creep under compression and direct tension loads of self-compacting-steel fibers reinforced concrete, by E. Marangon, R.D. Toledo Filho, E.M.R. Fairbairn -- 22 Hot and residual behavior of steel fiber-reinforced structural shotcrete exposed to high temperature, by P. Bamonte, P.G. Gambarova, A. Nafarieh -- Part 4: Structural elements: design, detailing, shear, tension stiffening -- 23 Optimization of HPFRCC-structures with innovative computational methods, by S. Grünewald, M. Flint, H. Han, J. Coenders, J.C. Walraven -- 24  Structural applications of hybrid fiber engineered cementitious composites - a review, by M. Maalej -- 25 D-zones in HPFRC, by M. Colombo, M. di Prisco -- 26 Effect of fiber reinforced concrete in members with highly complex stress fields, by S.-H. Chao, T. Pareek, D.R. Sahoo -- 27 Towards a design model for steel fiber reinforced concrete in bending, by G.P.A.G. van Zijl, P.B. Mbewe -- 28 Shear crack formation and propagation in fiber reinforced cementitious composites (FRCC), by I. Paegle, G. Fischer -- 29 Effects of shear transfer on the directions of principal strain field in cracked concrete with hooked steel fibers, by B. Suryanto, K. Nagai, K.Maekawa -- 30 Mechanical interaction between concrete and structural reinforcement in the tension stiffening process, by L. Larusson, G. Fischer, J. Jönsson -- 31 Confinement and tension stiffening effects in high performance self-consolidated hybrid fiber reinforced concrete composites, by W. Trono, G. Jen, D. Moreno, S. Billington, C.P. Ostertag -- 32 Tension-stiffening in reinforced high performance fiber-reinforced cement-based composites under direct tension, by D.M. Moreno, W. Trono, G. Jen, C. Ostertag, S.L. Billington -- 33 Crack formation in FRC structural elements containing conventional reinforcement, by J. Deluce, S.-C. Lee, F. Vecchio -- 34 Strength and behavior of SFRSCC and SFRC wall panels under one-way in-plane action, by N. Ganesan, P.V. Indira, S. Rajendra Prasad -- Part 5: Impact, cyclic and seismic loading -- 35 Drop-weight impact response of glass-fiber reinforced ceramic concrete, by S. Tassew, R. Mutsuddy, V.S. Bindiganavile, A.S. Lubell -- 36 Mechanical behavior of SHCC under impact loading, by V. Mechtcherine, O. Millon, M. Butler, K. Thoma -- 37 Shock-absorbing blocks made of HPFRCC for better girder-end structures, by K. Rokugo, H. Hatano, T. Nakashima, Y. Sakaguchi, M. Yamakami, K. Kobayashi -- 38 Post-peak cyclic behavior of steel fiber reinforced concrete under bending, by F. Germano, G. Plizzari -- 39 Seismic strengthening of piers by using high ductility cement, by K. Kosa, H. Shimizu, M. Kusano, H. Goda -- 40 Drift limits of concrete frame members reinforced with high-performance steel bars and fibersH. Tavallali, A. Lepage, J. Rautenberg, S. Pujol -- 41 Dynamic behavior of HPFRCC at high strain rate: the fiber role, by A. Caverzan, E. Cadoni, M. di Prisco -- 42 Beam-column connections for precast concrete frames using high performance fiber reinforced cement composites, by L.F. Maya, L. Albajar -- 43 A summary of ten years of research on HPFRC coupling beams, by G.J. Parra-Montesinos, J.K. Wight, R.D. Lequesne, M. Setkit -- Part 6: Ultra High Performance Fiber Reinforced Concrete -- 44 Size and shape effect of UHPFRC prisms tested under axial tension and bending, by B. Frettlöhr, K.-H. Reineck, H.W. Reinhardt -- 45 Characterization of bending and tensile behaviors of ultra-high performance concrete containing glass fibersby S. Rigaud, G. Chanvillard, J. Chen -- 46 Strain rate dependent tensile behavior of ultra-high performance fiber reinforced concrete, by K. Wille, S. El-Tawil, A.E. Naaman -- 47 Dynamic properties and damage model of ultra-high performance fiber reinforced cement composites subjected to repeated impacts, by J. Lai, W. Sun, S. Xu, C. Yang -- 48 CARDIFRC – From concept to industrial application, by B.L. Karihaloo -- 49 Static and dynamic behavior of hybrid precast bridge parapet made of ultra-high performance fiber reinforced concrete, by J.-P. Charron, F. Duchesneau, B. Massicotte -- 50 Shear strength of ultra high performance fiber reinforced concrete (UHPFRC) precast bridge joint, by C.-H. Lee, Y.-J. Kim, W.J. Chin, E.S. Choi -- 51 UHPFRC bolted joints: Failure modes of a new simple connection system, by E. Camacho, P. Serna, J.A. López -- 52 Rapid jacketing technique by using UHP-SHCC for damaged RC column under seismic loading, by M. Kunieda, Y. Umeda, N. Ueda, H. Nakamura -- 53 Structural design and previous tests for a retaining wall made with precast elements of UHPFRC, by J.Á. López, P. Serna, E. Camacho -- 54 Design for serviceability of ultra high performance concrete structures, by T. Leutbecher, E. Fehling -- Part 7: Textile Reinforced Concrete (TRC) and hybrid composites -- 55 Influence of textile alignment, moisture and shape of specimens on first crack load and load bearing behavior of textile reinforced concrete containing short fibers, by M. Hinzen, A. Hatting, W. Brameshuber -- 56 Tensile behavior of textile: influence of multilayer reinforcement, by I. Colombo, M. Colombo, A. Magri, G. Zani, M. di Prisco -- 57 Optimization of quasi-isotropic formulation of fiber-cement laminates: polar method and experimental validation, by P. Hamelin, A. Gabor, T. Q. Bach, A. Si Larbi;58 Bond behavior of textile reinforcements - development of a pull-out test and modeling of the respective bond versus slip relation, by E. Lorenz, R. Ortlepp -- 59 Effect of short fibers on the behavior of textile reinforced concrete under tensile loading, by R. Barhum, V. Mechtcherine -- 60 High performance light-weight cement composite plates using wastepaper fibers and wire mesh, by C. Sujivorakul, T. Muhammud, N. Dokkhan -- 61 Textile reinforced cementitious composites for retrofit and strengthening of concrete structures under impact loading, by A. Katz, M. Tsesarsky, A. Peled, I. Anteby -- 62 Industrial processing technique for textile reinforced cement composites with structural use, by J. Wastiels, O. Remy -- 63 A mixed pultrusion and braiding process adapted to the production of high performance cement composite beams, by A. Gabor, P. Hamelin, G. Promis, by 64 TRC and hybrid solutions for repairing and/or strengthening reinforced concrete beams, by A. Si Larbi, R. Contamine, P. Hamelin -- 65 Hybrid fiber reinforcement and crack formation in cementitious composite materials, by E. Pereira, G. Fischer, J. Barros -- 66 Impact behavior of 3D fabric reinforced cementitious composites, by A. Peled, D. Zhu, B. Mobasher -- Author index -- Subject Index.  .
520 ## - SUMMARY, ETC.
Summary, etc High Performance Fiber Reinforced Cement Composites (HPFRCC) represent a class of cement composites whose stress-strain response in tension undergoes strain hardening behaviour accompanied by multiple cracking, leading to a high strain prior to failure. The primary objective of this International Workshop was to provide a compendium of up-to-date information on the most recent developments and research advances in the field of High Performance Fiber Reinforced Cement Composites. Approximately 65 contributions from leading world experts are assembled in these proceedings and provide an authoritative perspective on the subject. Special topics include fresh and hardening state properties; self-compacting mixtures; mechanical behavior under compressive, tensile, and shear loading; structural applications; impact, earthquake and fire resistance; durability issues; ultra-high performance fiber reinforced concrete; and textile reinforced concrete. Target readers: graduate students, researchers, fiber producers, design engineers, material scientists.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Topical term or geographic name as entry element Engineering.
Topical term or geographic name as entry element Computer aided design.
Topical term or geographic name as entry element Mechanics, applied.
Topical term or geographic name as entry element Civil engineering.
Topical term or geographic name as entry element Building construction.
Topical term or geographic name as entry element Engineering.
Topical term or geographic name as entry element Civil Engineering.
Topical term or geographic name as entry element Building Materials.
Topical term or geographic name as entry element Building Repair and Maintenance.
Topical term or geographic name as entry element Theoretical and Applied Mechanics.
Topical term or geographic name as entry element Computer-Aided Engineering (CAD, CAE) and Design.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Reinhardt, Hans W.
Relator term editor.
Personal name Naaman, A. E.
Relator term editor.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element SpringerLink (Online service)
773 0# - HOST ITEM ENTRY
Title Springer eBooks
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Display text Printed edition:
International Standard Book Number 9789400724358
856 40 - ELECTRONIC LOCATION AND ACCESS
Uniform Resource Identifier http://dx.doi.org/10.1007/978-94-007-2436-5
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Source of classification or shelving scheme
Item type E-Book
Copies
Price effective from Permanent location Date last seen Not for loan Date acquired Source of classification or shelving scheme Koha item type Damaged status Lost status Withdrawn status Current location Full call number
2014-04-03AUM Main Library2014-04-03 2014-04-03 E-Book   AUM Main Library624

Languages: 
English |
العربية