//]]>
Normal View MARC View ISBD View

Modern Theories of Many-Particle Systems in Condensed Matter Physics

by Cabra, Daniel C.
Authors: Honecker, Andreas.%editor. | Pujol, Pierre.%editor. | SpringerLink (Online service) Series: Lecture Notes in Physics, 0075-8450 ; . 843 Physical details: XIII, 368p. 130 illus. online resource. ISBN: 3642104495 Subject(s): Physics. | Magnetism. | Physics. | Strongly Correlated Systems, Superconductivity. | Statistical Physics, Dynamical Systems and Complexity. | Magnetism, Magnetic Materials. | Quantum Information Technology, Spintronics. | Phase Transitions and Multiphase Systems.
Tags from this library:
No tags from this library for this title.
Item type Location Call Number Status Date Due
E-Book E-Book AUM Main Library 530.41 (Browse Shelf) Not for loan

Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors -- Electronic Liquid Crystal Phases in Strongly Correlated Systems -- Selected Topics in Graphene Physics -- Strong Electronic Correlations: Dynamical Mean-Field Theory and Beyond -- Nonequilibrium Transport and Dephasing in Coulomb-blockaded Quantum Dots -- Many-body Physics From a Quantum Information Perspective -- Statistical Mechanics of Classical and Quantum Computational Complexity -- Non-perturbative Methods in (1+1) Dimensional Quantum Field Theory.

Condensed matter systems where interactions are strong are inherently difficult to analyze theoretically. The situation is particularly interesting in low-dimensional systems, where quantum fluctuations play a crucial role. Here, the development of non-perturbative methods and the study of integrable field theory have facilitated the understanding of the behavior of many quasi one- and two-dimensional strongly correlated systems. In view of the same rapid development that has taken place for both experimental and numerical techniques, as well as the emergence of novel testing-grounds such as cold atoms or graphene, the current understanding of strongly correlated condensed matter systems differs quite considerably from standard textbook presentations.   The present volume of lecture notes aims to fill this gap in the literature by providing a collection of authoritative tutorial reviews, covering such topics as quantum phase transitions of antiferromagnets and cuprate-based high-temperature superconductors, electronic liquid crystal phases, graphene physics, dynamical mean field theory applied to strongly correlated systems, transport through quantum dots, quantum information perspectives on many-body physics, frustrated magnetism, statistical mechanics of classical and quantum computational complexity, and integrable methods in statistical field theory.   As both graduate-level text and authoritative reference on this topic, this book will benefit newcomers and more experienced researchers in this field alike.

There are no comments for this item.

Log in to your account to post a comment.

Languages: 
English |
العربية