//]]>
Normal View MARC View ISBD View

Statics and Dynamics of Weakly Coupled Antiferromagnetic Spin-1/2 Ladders in a Magnetic Field

by Bouillot, Pierre.
Authors: SpringerLink (Online service) Series: Springer Theses, Recognizing Outstanding Ph.D. Research, 2190-5053 Physical details: X, 98 p. 37 illus., 13 illus. in color. online resource. ISBN: 3642338089 Subject(s): Physics. | Quantum theory. | Physics. | Quantum Information Technology, Spintronics. | Solid State Physics. | Numerical and Computational Physics. | Quantum Physics.
Tags from this library:
No tags from this library for this title.
Item type Location Call Number Status Date Due
E-Book E-Book AUM Main Library 621.3 (Browse Shelf) Not for loan

Introduction -- Spin-1/2 ladders -- Methods -- Static properties and NMR relaxation rate -- Dynamical correlations of a spin ladder -- Conclusions and perspectives.

This thesis shows how a combination of analytic and numerical techniques, such as a time dependent and finite temperature Density Matrix Renormalization Group (DMRG) technique, can be used to obtain the physical properties of low dimensional quantum magnets with an unprecedented level of accuracy. A comparison between the theory and experiment then enables these systems to be used as quantum simulators; for example, to test various generic properties of low dimensional systems such as Luttinger liquid physics, the paradigm of one dimensional interacting quantum systems. Application of these techniques to a material made of weakly coupled ladders (BPCB) allowed the first quantitative test of Luttinger liquids. In addition, other physical quantities (magnetization, specific heat etc.), and more remarkably the spin-spin correlations – directly measurable in neutron scattering experiments – were in excellent agreement with the observed quantities. We thus now have tools to quantitatively assess the dynamics for this class of quantum systems.

There are no comments for this item.

Log in to your account to post a comment.

Languages: 
English |
العربية