//]]>
Normal View MARC View ISBD View

Electronic Properties of Materials

by Hummel, Rolf E.
Authors: SpringerLink (Online service) Physical details: XIX, 488 p. 310 illus. online resource. ISBN: 1441981640 Subject(s): Magnetism. | Electronics. | Optical materials. | Materials. | Materials Science. | Optical and Electronic Materials. | Solid State Physics. | Electronics and Microelectronics, Instrumentation. | Magnetism, Magnetic Materials. | Optics, Optoelectronics, Plasmonics and Optical Devices. | Metallic Materials.
Tags from this library:
No tags from this library for this title.
Item type Location Call Number Status Date Due
E-Book E-Book AUM Main Library 620.11295 (Browse Shelf) Not for loan

Part I: Fundamentals of Electron Theory: Introduction. Wave Properties of Electrons. The Schroedinger Equation. Solution of the Schroedinger Equation for Four Specific Problems. Energy Bands in Crystals. Electrons in a Crystal -- Part II: Electrical Properties of Materials: Electrical Conduction in Metals and Alloys. Semiconductors. Electrical Properties of Polymers, Ceramics, Dielectrics and Amorphous Materials -- Part III: Optical Properties of Materials: The Optical Constants. Atomistic Theory of the Optical Properties. Quantum Mechanical Treatment of the Optical Properties. Applications -- Part IV: Magnetic Properties of Materials: Foundations of Magnetism. Magnetic Phenomena and Their Interpretation - Classical Approach. Quantum Mechanical Considerations. Applications -- Part V: Thermal Properties of Materials: Introduction. Fundamentals of Thermal Properties. Heat Capacity. Thermal Conduction. Thermal Expansion -- Appendices -- Index.

This book on electrical, optical, magnetic, and thermal properties of materials differs from other introductory texts in solid-state physics. First, it is written for engineers, particularly materials and electrical engineers, who what to gain a fundamental understanding of semiconductor devices, magnetic materials, lasers, alloys, and so forth. Second, it stresses concepts rather than mathematical formalism, which should make the presentation relatively easy to read. Third, it is not an encyclopedia: The topics are restricted to material considered to be essential and that can be covered in one 15-week semester. The book is divided into five parts. The first part, "Fundamentals of Electron Theory," introduces the essential quantum mechanical concepts needed for understanding materials science; the other parts may be read independently of each other. Many practical applications are discussed to provide students with an understanding of electronic devices currently in use. The solutions to the numerical problems are given in the appendix. Previous editions have been well received by students and teachers alike. This Fourth Edition has again been thoroughly revised and brought up to date to take into account the explosive developments in electrical, optical, and magnetic materials and devices. Specifically, new topics have been added in the "applied sections," such as energy saving light sources, particularly compact fluorescence light fixtures, organic light-emitting diodes (OLEDs), organic photovoltaics (OPV cells), optical fibers,  pyroelectricity, phase-change memories, blue ray disks, holographic versatile disks, galvanoelectric phenomena (emphasizing the entire spectrum of primary and rechargeable batteries), graphene, quantum Hall effect, iron-based semiconductors (pnictides), etc. to mention just a few subjects.

There are no comments for this item.

Log in to your account to post a comment.

Languages: 
English |
العربية