//]]>
Normal View MARC View ISBD View

Super-Resolved Imaging

by Zalevsky, Zeev.
Authors: SpringerLink (Online service) Series: SpringerBriefs in Physics Physical details: XVI, 116p. 65 illus., 21 illus. in color. online resource. ISBN: 1461408334 Subject(s): Physics. | Computer vision. | Physics. | Optics, Optoelectronics, Plasmonics and Optical Devices. | Signal, Image and Speech Processing. | Computer Imaging, Vision, Pattern Recognition and Graphics.
Tags from this library:
No tags from this library for this title.
Item type Location Call Number Status Date Due
E-Book E-Book AUM Main Library 621.36 (Browse Shelf) Not for loan

Preface -- Contents -- Chapter One -- 1.1 Fourier Optics -- 1.1.1 Free Space propagation: Fresnel & Fraunhofer integrals -- 1.1.2 Imaging system -- 1.2: Diffraction Resolution limitation -- 1.3: Geometrical Resolution limitation -- The effects of sampling by CCD (pixel shape & aliasing) -- 1.4 Super-resolution explained by Degrees of freedom number -- 1.5 Inverse problem statement of super-resolution -- References -- Chapter 2 -- 2.1 Single snap-shot double field optical zoom -- 2.1.1 Introduction -- 2.1.2 Theory -- 2.1.3. Simulation Investigation -- 2.2 Full Field of View Super-resolution Imaging based on Two Static Gratings and White Light Illumination -- 2.2.1 Introduction -- 2.2.2 Mathematical Analysis -- 2.2.3 Experimental Results -- 2.3 Super-resolution using gray level coding -- 2.3.1 Introduction -- 2.3.2 Theory -- 2.3.3 Experiment -- References -- Chapter 3 -- 3.1 Geometrical Super Resolution Using Code Division Multiplexing -- 3.1.1 Introduction -- 3.1.2 Theoretical Analysis -- 3.1.3 Computer Simulations -- 3.1.4 Experimental Results -- 3.2 Diffraction Super Resolution Using Code Division Multiplexing -- 3.2.1 Introduction -- 3.2.2 Theoretical Analysis -- 3.2.3 Computer Simulations -- 3.2.4 Experimental Results -- References -- Chapter 4 -- 4.1 Geometrical Super Resolved Imaging Using Non periodic Spatial Masking -- 4.1.1 Introduction -- 4.1.2 Theoretical Analysis -- 4.1.3 Experimental investigation -- 4.2 Random angular coding for super-resolved imaging -- 4.2.1 Introduction -- 4.2.2 Mathematical Derivation -- 4.2.3. Numerical Simulation of the System -- 4.2.4. Experimental results -- References.

In this brief we review several approaches that provide super resolved imaging, overcoming the geometrical limitation of the detector as well as the diffraction effects set by the F number of the imaging lens. In order to obtain the super resolved enhancement, we use spatially non-uniform and/or random transmission structures to encode the image or the aperture planes. The desired resolution enhanced images are obtained by post-processing decoding of the captured data.

There are no comments for this item.

Log in to your account to post a comment.

Languages: 
English |
العربية