//]]>
Normal View MARC View ISBD View

Raman Imaging

by Zoubir, Arnaud.
Authors: SpringerLink (Online service) Series: Springer Series in Optical Sciences, 0342-4111 ; . 168 Physical details: XIII, 383 p. 199 illus., 92 illus. in color. online resource. ISBN: 3642282520 Subject(s): Physics. | Chemistry, Physical organic. | Microscopy. | Physics. | Optics, Optoelectronics, Plasmonics and Optical Devices. | Physical Chemistry. | Biological Microscopy.
Tags from this library:
No tags from this library for this title.
Item type Location Call Number Status Date Due
E-Book E-Book AUM Main Library 621.36 (Browse Shelf) Not for loan

Instrumentation: -- Theory and instrumentation -- Imaging modes -- Micro-Raman Applications: -- Raman imaging in Semiconductor Physics and its application in Microelectronics -- Raman optimization of the properties of nano-phased materials -- Raman Imaging of meso- and nano-strutured materials -- Application of Raman-based images in the Earth sciences -- Uses of Raman Mapping and Imaging in Pharmaceutical Forensics -- Raman Microscopy: A Versatile Approach to Bio-imaging -- Mapping chemical and structural composition of biological and pharmaceutical samples by Raman and Surface-enhanced Raman scattering (SERS) spectroscopy -- Morphology and Chemical Structure: Agricultural Applications -- Tip-Enhanced Raman Spectroscopy: -- From stress and dopant distribution mappings in solar cells to applications of the surface enhanced Raman effect -- Tip-enhanced Raman and photoluminescence of nanotubes -- CARS spectroscopy, implementation to far-field and near-filed microscopy and applications.

Raman imaging has long been used to probe the chemical nature of a sample, providing information on molecular orientation, symmetry and structure with sub-micron spatial resolution. Recent technical developments have pushed the limits of micro-Raman microscopy, enabling the acquisition of Raman spectra with unprecedented speed, and opening a pathway to fast chemical imaging for many applications from material science and semiconductors to pharmaceutical drug development and cell biology, and even art and forensic science. The promise of tip-enhanced raman spectroscopy (TERS) and near-field techniques is pushing the envelope even further by breaking the limit of diffraction and enabling nano-Raman microscopy.

There are no comments for this item.

Log in to your account to post a comment.

Languages: 
English |
العربية