//]]>
Normal View MARC View ISBD View

Theory of Charge Transport in Carbon Electronic Materials

by Shuai, Zhigang.
Authors: Wang, Linjun.%author. | Song, Chenchen.%author. | SpringerLink (Online service) Series: SpringerBriefs in Molecular Science, 2191-5407 Physical details: IX, 90p. 59 illus., 23 illus. in color. online resource. ISBN: 3642250769 Subject(s): Chemistry. | Optical materials. | Surfaces (Physics). | Chemistry. | Theoretical and Computational Chemistry. | Optical and Electronic Materials. | Semiconductors. | Computer Applications in Chemistry. | Characterization and Evaluation of Materials.
Tags from this library:
No tags from this library for this title.
Item type Location Call Number Status Date Due
E-Book E-Book AUM Main Library 541.2 (Browse Shelf) Not for loan

Introduction -- Hopping Mechanism -- Polaron Mechanism -- Deformation Potential Theory -- Outlook.

Mechanism of charge transport in organic solids has been an issue of intensive interests and debates for over 50 years, not only because of the applications in printing electronics, but also because of the great challenges in understanding the electronic processes in complex systems. With the fast developments of both electronic structure theory and the computational technology, the dream of predicting the charge mobility is now gradually becoming a reality. This volume describes recent progresses in Prof. Shuai’s group in developing computational tools to assess the intrinsic carrier mobility for organic and carbon materials at the first-principles level. According to the electron-phonon coupling strength, the charge transport mechanism is classified into three different categories, namely, the localized hopping model, the extended band model, and the polaron model. For each of them, a corresponding theoretical approach is developed and implemented into typical examples.

There are no comments for this item.

Log in to your account to post a comment.

Languages: 
English |
العربية