//]]>
Normal View MARC View ISBD View

Design of reinforced concrete /

by McCormac, Jack C.
Authors: Brown, Russell H.%author Published by : Wiley, (Hoboken, N.J :) Physical details: xvii, 714 p. : ill. ; 27 cm. ISBN: 1118129849 Subject(s): Reinforced concrete construction. Year: 2014
Online Resources:
Tags from this library:
No tags from this library for this title.
Item type Location Call Number Status Date Due
Book Book AUM Main Library 624.18341 M131 (Browse Shelf) Available
Book Book AUM Main Library 624.18341 M131 (Browse Shelf) Available

Includes bibliographical references and index.

Machine generated contents note: 1.Introduction -- 1.1.Concrete and Reinforced Concrete -- 1.2.Advantages of Reinforced Concrete as a Structural Material -- 1.3.Disadvantages of Reinforced Concrete as a Structural Material -- 1.4.Historical Background -- 1.5.Comparison of Reinforced Concrete and Structural Steel for Buildings and Bridges -- 1.6.Compatibility of Concrete and Steel -- 1.7.Design Codes -- 1.8.SI Units and Shaded Areas -- 1.9.Types of Portland Cement -- 1.10.Admixtures -- 1.11.Properties of Concrete -- 1.12.Aggregates -- 1.13.High-Strength Concretes -- 1.14.Fiber-Reinforced Concretes -- 1.15.Concrete Durability -- 1.16.Reinforcing Steel -- 1.17.Grades of Reinforcing Steel -- 1.18.SI Bar Sizes and Material Strengths -- 1.19.Corrosive Environments -- 1.20.Identifying Marks on Reinforcing Bars -- 1.21.Introduction to Loads -- 1.22.Dead Loads -- 1.23.Live Loads -- 1.24.Environmental Loads -- 1.25.Selection of Design Loads -- 1.26.Calculation Accuracy -- 1.27.Impact of Computers on Reinforced Concrete Design -- Problems -- 2.Flexural Analysis of Beams -- 2.1.Introduction -- 2.2.Cracking Moment -- 2.3.Elastic Stresses -- Concrete Cracked -- 2.4.Ultimate or Nominal Flexural Moments -- 2.5.SI Example -- 2.6.Computer Examples -- Problems -- 3.Strength Analysis of Beams According to ACI Code -- 3.1.Design Methods -- 3.2.Advantages of Strength Design -- 3.3.Structural Safety -- 3.4.Derivation of Beam Expressions -- 3.5.Strains in Flexural Members -- 3.6.Balanced Sections Tension-Controlled Sections and Compression-Controlled or Brittle Sections -- 3.7.Strength Reduction or Factors -- 3.8.Minimum Percentage of Steel -- 3.9.Balanced Steel Percentage -- 3.10.Example Problems -- 3.11.Computer Examples -- Problems -- 4.Design of Rectangular Beams and One-Way Slabs -- 4.1.Load Factors -- 4.2.Design of Rectangular Beams -- 4.3.Beam Design Examples -- 4.4.Miscellaneous Beam Considerations -- 4.5.Determining Steel Area When Beam Dimensions Are Predetermined -- 4.6.Bundled Bars -- 4.7.One-Way Slabs -- 4.8.Cantilever Beams and Continuous Beams -- 4.9.SI Example -- 4.1.Computer Example -- Problems -- 5.Analysis and Design of T Beams and Doubly Reinforced Beams -- 5.1.T Beams -- 5.2.Analysis of T Beams -- 5.3.Another Method for Analyzing T Beams -- 5.4.Design of T Beams -- 5.5.Design of T Beams for Negative Moments -- 5.6.L-Shaped Beams -- 5.7.Compression Steel -- 5.8.Design of Doubly Reinforced Beams -- 5.9.SI Examples -- 5.10.Computer Examples -- Problems -- 6.Serviceability -- 6.1.Introduction -- 6.2.Importance of Deflections -- 6.3.Control of Deflections -- 6.4.Calculation of Deflections -- 6.5.Effective Moments of Inertia -- 6.6.Long-Term Deflections -- 6.7.Simple-Beam Deflections -- 6.8.Continuous-Beam Deflections -- 6.9.Types of Cracks -- 6.10.Control of Flexural Cracks -- 6.11.ACI Code Provisions Concerning Cracks -- 6.12.Miscellaneous Cracks -- 6.13.SI Example -- 6.14.Computer Example -- Problems -- 7.Bond Development Lengths and Splices -- 7.1.Cutting Off or Bending Bars -- 7.2.Bond Stresses -- 7.3.Development Lengths for Tension Reinforcing -- 7.4.Development Lengths for Bundled Bars -- 7.5.Hooks -- 7.6.Development Lengths for Welded Wire Fabric in Tension -- 7.7.Development Lengths for .Compression Bars -- 7.8.Critical Sections for Development Length -- 7.9.Effect of Combined Shear and Moment on Development Lengths -- 7.10.Effect of Shape of Moment Diagram on Development Lengths -- 7.11.Cutting Off or Bending Bars (Continued) -- 7.12.Bar Splices in Flexural Members -- 7.13.Tension Splices -- 7.14.Compression Splices -- 7.15.Headed and Mechanically Anchored Bars -- 7.16.SI Example -- 7.17.Computer Example -- Problems -- 8.Shear and Diagonal Tension -- 8.1.Introduction -- 8.2.Shear Stresses in Concrete Beams -- 8.3.Lightweight Concrete -- 8.4.Shear Strength of Concrete -- 8.5.Shear Cracking of Reinforced Concrete Beams -- 8.6.Web Reinforcement -- 8.7.Behavior of Beams with Web Reinforcement -- 8.8.Design for. Shear -- 8.9.ACI Code Requirements -- 8.10.Shear Design Example Problems -- 8.11.Economical Spacing of Stirrups -- 8.12.Shear Friction and Corbels -- 8.13.Shear Strength of Members Subjected to Axial Forces -- 8.14.Shear Design Provisions for Deep Beams -- 8.15.Introductory Comments on Torsion -- 8.16.SI Example -- 8.17.Computer Example -- Problems -- 9.Introduction to Columns -- 9.1.General -- 9.2.Types of Columns -- 9.3.Axial Load Capacity of Columns -- 9.4.Failure of Tied and Spiral Columns -- 9.5.Code Requirements for Cast-in-Place Columns -- 9.6.Safety Provisions for Columns -- 9.7.Design Formulas -- 9.8.Comments on Economical Column Design -- 9.9.Design of Axially Loaded Columns -- 9.10.SI Example -- 9.11.Computer Example -- Problems -- 10.Design of Short Columns Subject to Axial Load and Bending -- 10.1.Axial Load and Binding -- 10.2.The Plastic Centroid -- 10.3.Development of Interaction Diagrams -- 10.4.Use of Interaction Diagrams -- 10.5.Code Modifications of Column Interaction Diagrams -- 10.6.Design and Analysis of Eccentrically Loaded Columns Using Interaction Diagrams -- 10.7.Shear in Columns -- 10.8.Biaxial Bending -- 10.9.Design of Biaxially Loaded Columns -- 10.10.Continued Discussion of Capacity Reduction Factors -- 10.11.Computer Example -- Problems -- 11.Slender Columns -- 11.1.Introduction -- 11.2.Nonsway and Sway Frames -- 11.3.Slenderness Effects -- 11.4.Determining k Factors with Alignment Charts -- 11.5.Determining k Factors with Equations -- 11.6.First-Order Analyses Using Special Member Properties -- 11.7.Slender Columns in Nonsway and Sway Frames -- 11.8.ACI Code Treatments of Slenderness Effects -- 11.9.Magnification of Column Moments in Nonsway Frames -- 11.10.Magnification of Column Moments in Sway Frames -- 11.11.Analysis of Sway Frames -- 11.12.Computer Examples -- Problems -- 12.Footings -- 12.1.Introduction -- 12.2.Types of Footings -- 12.3.Actual Soil Pressures -- 12.4.Allowable Soil Pressures -- 12.5.Design of Wall Footings -- 12.6.Design of Square Isolated Footings -- 12.7.Footings Supporting Round or Regular Polygon-Shaped Columns -- 12.8.Load Transfer from Columns to Footings -- 12.9.Rectangular Isolated Footings -- 12.10.Combined Footings -- 12.11.Footing Design for Equal Settlements -- 12.12.Footings Subjected to Axial Loads and Moments -- 12.13.Transfer of Horizontal Forces -- 12.14.Plain Concrete Footings -- 12.15.SI Example -- 12.16.Computer Examples -- Problems -- 13.Retaining Walls -- 13.1.Introduction -- 13.2.Types of Retaining Walls -- 13.3.Drainage -- 13.4.Failures of Retaining Walls -- 13.5.Lateral Pressure on Retaining Walls -- 13.6.Footing Soil Pressures -- 13.7.Design of Semigravity Retaining Walls -- 13.8.Effect of Surcharge -- 13.9.Estimating the Sizes Cantilever Retaining Walls -- 13.10.Design Procedure for Cantilever Retaining Walls -- 13.11.Cracks and Wall Joints -- Problems -- 14.Continuous Reinforced Concrete Structures -- 14.1.Introduction -- 14.2.General Discussion of Analysis Methods -- 14.3.Qualitative Influence Lines -- 14.4.Limit Design -- 14.5.Limit Design under the ACI Code -- 14.6.Preliminary Design of Members -- 14.7.Approximate Analysis of Continuous Frames for Vertical Loads -- 14.8.Approximate Analysis of Continuous Frames for Lateral Loads -- 14.9.Computer Analysis of Building Frames -- 14.10.Lateral Bracing for Buildings -- 14.11.Development Length Requirements for Continuous Members -- Problems -- 15.Torsion -- 15.1.Introduction -- 15.2.Torsional Reinforcing -- 15.3.Torsional Moments that Have to Be Considered in Design -- 15.4.Torsional Stresses -- 15.5.When Torsional Reinforcing Is Required by the ACI -- 15.6.Torsional Moment Strength -- 15.7.Design of Torsional Reinforcing -- 15.8.Additional ACI Requirements -- 15.9.Example Problems Using U.S. Customary Units -- 15.10.SI Equations and Example Problem -- 15.11.Computer Example -- Problems -- 16.Two-Way Slabs Direct Design Method -- 16.1.Introduction -- 16.2.Analysis of Two-Way Slabs -- 16.3.Design of Two-Way Slabs by the ACI Code -- 16.4.Column and Middle Strips -- 16.5.Shear Resistance of Slabs -- 16.6.Depth Limitations and Stiffness Requirements -- 16.7.Limitations of Direct Design Method -- 16.8.Distribution of Moments in Slabs -- 16.9.Design of an Interior Flat Plate -- 16.10.Placing of. Live Loads -- 16.11.Analysis of Two-Way Slabs with Beams -- 16.12.Transfer of Moments and Shears between Slabs and Columns -- 16.13.Openings in Slab Systems -- 16.14.Computer Example -- Problems -- 17.Two-Way Slabs Equivalent Frame Method -- 17.1.Moment Distribution for Nonprismatic Members -- 17.2.Introduction to the Equivalent Frame Method -- 17.3.Properties of-Slab Beams -- 17.4.Properties of Columns -- 17.5.Example Problem -- 17.6.Computer Analysis -- 17.7.Computer Example -- Problems -- 18.Walls -- 18.1.Introduction -- 18.2.Non-Load-Bearing Walls -- 18.3.Load-Bearing Concrete Walls -- Empirical Design Method -- 18.4.Load-Bearing Concrete Walls -- Rational Design -- 18.5.Shear Walls -- 18.6.ACI Provisions for Shear Walls -- 18.7.Economy in Wall Construction -- 18.8.Computer Example -- Problems -- 19.Prestressed Concrete -- 19.1.Introduction -- 19.2.Advantages and Disadvantages of Prestressed Concrete -- 19.3.Pretensioning and Posttensioning -- 19.4.Materials Used for Prestressed Concrete -- 19.5.Stress Calculations -- 19.0.Shapes of Prestressed Sections -- 19.7.Prestres Losses -- 19.8.Ultimate Strength of Prestressed Sections -- 19.9.Deflections -- 19.10.Shear in Prestressed Sections -- 19.11.Design of Shear Reinforcement -- 19.12.Additional Topics -- 19.13.Computer Example -- Problems -- 20.Reinforced Concrete Masonry -- 20.1.Introduction -- 20.2.Masonry Materials -- 20.3.Specified Compressive Strength of Masonry -- 20.4.Maximum Flexural Tensile Reinforcement -- 20.5.Walls with Out-of-Plane Loads -- Non-Load-Bearing Walls -- 20.6.Masonry Lintels -- 20.7.Walls with Out-of-Plane Loads -- Load-Bearing -- 20.8.Walls with In-Plane Loading -- Shear Walls -- 20.9.Computer Example

Note continued: Problems -- A.Tables and Graphs: U.S. Customary Units -- B.Tables in SI Units -- C.The Strut-and-Tie Method of Design -- C.1.Introduction -- C.2.Deep Beams -- C.3.Shear Span and Behavior Regions -- C.4.Truss Analogy -- C.5.Definitions -- C.6.ACI Code Requirements for Strut-and-Tie Design -- C.7.Selecting a Truss Model -- C.8.Angles of Struts in Truss Models -- C.9.Design Procedure -- D.Seismic Design of Reinforced Concrete Structures -- D.1.Introduction -- D.2.Maximum Considered Earthquake -- D.3.Soil Site Class -- D.4.Risk and Importance Factors -- D.5.Seismic Design Categories -- D.6.Seismic Design Loads -- D.7.Detailing Requirements for Different Classes of Reinforced Concrete Moment Frames -- Problems.

"The Ninth Edition of this bestselling book continues the successful tradition of earlier editions by introducing the fundamentals of reinforced concrete design in a clear and understandable manner. Numerous examples of the principles discussed are included. This edition includes revisions made by the American Concrete Institute in Building Code Requirements for Structural Concrete (318-08) and Commentary (318R-08). The text was prepared for an introductory three credit hour undergraduate course on reinforced concrete design. Nevertheless, sufficient material is included so that this textbook can be used for a second additional three credit hour undergraduate course. Further, this text is also useful for practicing engineers as it presents the latest requirements of the ACI design code"--

There are no comments for this item.

Log in to your account to post a comment.

Languages: 
English |
العربية