//]]>
Normal View MARC View ISBD View

Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure

by Haslach Jr., Henry W.
Authors: SpringerLink (Online service) Physical details: XI, 312p. 50 illus. online resource. ISBN: 1441977651 Subject(s): Engineering. | Thermodynamics. | Mechanical engineering. | Biomaterials. | Engineering. | Engineering Thermodynamics, Heat and Mass Transfer. | Thermodynamics. | Biomaterials. | Mechanical Engineering.
Tags from this library:
No tags from this library for this title.
Item type Location Call Number Status Date Due
E-Book E-Book AUM Main Library 621.4021 (Browse Shelf) Not for loan

History of Non-Equilibrium Thermodynamics -- Energy Methods -- Evolution Construction for Homogeneous Thermodynamic Systems -- Viscoelasticity -- Viscoplasticity -- The Thermodynamic Relaxation Modulus as a Multi-scale Bridge from the Atomic Level to the Bulk Material -- Contact Geometric Structure for Non-equilibrium Thermodynamics. Bifurcations in the Generalized Energy Function -- Evolution Construction for Non-homogeneous Thermodynamic Systems -- Electromagnetism and Joule Heating -- Fracture.  .

Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure explores the thermodynamics of non-equilibrium processes in materials. The book develops a general technique to construct nonlinear evolution equations describing non-equilibrium processes, while also developing a geometric context for non-equilibrium thermodynamics. Solid materials are the main focus in this volume, but the construction is shown to also apply to fluids. This volume also:    •             Explains the theory behind a thermodynamically-consistent construction of non-linear evolution equations for non-equilibrium processes, based on supplementing the second law with a maximum dissipation criterion  •             Provides a geometric setting for non-equilibrium thermodynamics in differential topology and, in particular, contact structures that generalize Gibbs  •            Models processes that include thermoviscoelasticity, thermoviscoplasticity, thermoelectricity and dynamic fracture  •            Recovers several standard time-dependent constitutive models as maximum dissipation processes  •            Produces transport models that predict finite velocity of propagation  •            Emphasizes applications to the time-dependent modeling of soft biological tissue  Maximum Dissipation Non-Equilibrium Thermodynamics and its Geometric Structure will be valuable for researchers, engineers and graduate students in non-equilibrium thermodynamics and the mathematical modeling of material behavior.

There are no comments for this item.

Log in to your account to post a comment.

Languages: 
English |
العربية