//]]>
Normal View MARC View ISBD View

Photonic Structures Inspired by Nature

by Kolle, Mathias.
Authors: SpringerLink (Online service) Series: Springer Theses Physical details: XVI, 144 p. online resource. ISBN: 3642151698 Subject(s): Physics. | Optical materials. | Physics. | Nanoscale Science and Technology. | Optics and Electrodynamics. | Optical and Electronic Materials. | Biophysics and Biological Physics.
Tags from this library:
No tags from this library for this title.
Item type Location Call Number Status Date Due
E-Book E-Book AUM Main Library 620.5 (Browse Shelf) Not for loan

1. Theoretical Aspects of Photonic Structures -- 2. Structure Colours in Nature -- 3. Materials and Techniques -- 4. Static and Tuneable One-Dimensional Photonic Structures -- 5. Microfabrication of Photonic Structures with Higher Dimensionality -- 6. Mimicry of Papilio blumei's Colourful Wing Scale Structure -- 7. Conclusions and Future Work -- 8. Acknowledgements -- 9. Related Publication.

Unlike most natural colours that are based on pigment absorption, the striking iridescent and intense colouration of many butterflies, birds or beetles stems from the interaction of light with periodic sub-micrometer surface or volume patterns, so called “photonic structures”. These “structural colours” are increasingly well understood, but they are difficult to create artificially and exploit technologically. In this thesis the field of natural structural colours and biomimetic photonic structures is covered in a wide scope, ranging from plant photonics to theoretical optics. It demonstrates diffractive elements on the petal surfaces of many flowering plant species; these form the basis for the study of the role of structural colours in pollinator attraction. Self-assembly techniques, combined with scaleable nanofabrication methods, were used to create complex artificial photonic structures inspired by those found in nature. In particular, the colour effect of a Papilio butterfly was mimicked and, by variation of its design motive, enhanced. All photonic effects described here are underpinned by state-of-the-art model calculations.

There are no comments for this item.

Log in to your account to post a comment.

Languages: 
English |
العربية